0%

(CVPR 2018) Feature Generating Networks for Zero-Shot Learning

Keyword [Feature Generation]

Xian Y, Lorenz T, Schiele B, et al. Feature generating networks for zero-shot learning[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2018: 5542-5551.



1. Overview


1.1. Motivation

  • data imbalance between seen and unseen classes

In this paper

  • synthesizes CNN features conditioned on class-level semantic information
  • WGAN + classification loss
  • exploit generated CNN features to train softmax classifier

1.2. Contribution

  • f-CLSWGAN
  • experiments on five dataset
  • generate deep feature to improve ZSL

1.3.1. GAN

  • GAN
  • cGAN
  • DCGAN
  • InfoGAN
  • WGAN

1.3.2. ZSL and GZSL

  • learn compatibility between images and classes
  • classification



2. Methods




2.1. Definitions



  • x. image feature
  • y. seen label
  • c(y). label embedding
  • u. unseen label

2.2. f-GAN



  • D. [0, 1] with MLP + sigmoid

2.3. f-WGAN



  • α ~ U(0, 1)
  • D. no sigmoid

2.4. f-CLSWGAN



2.5. Classification

  • Multimodal Embedding



  • Softmax





3. Experiments


3.1. Dataset



3.2. Details

  • sentence. character-based CNN-RNN
  • attribute.
  • G and D. MLP + LeakyReLU
  • no BN
  • the final layer of G. ReLU
  • λ=10, β=0.01

3.3. Evaluation

  • T1. average per-class top-1 accuracy
  • harmonic mean


3.4. Comparison



3.5. Ablation Study